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ABSTRACT 

For more than eight years, the DMSP F-15 and RADCAL satellites have been operating past their operational life-
times and are facing imminent failure, leaving the US military without a reliable means for C-band radar calibration 
and performance monitoring. To address the need for a quick, reliable, and low-cost solution to supplement these 
failing satellites, a team of University of Hawaii students has developed a nanosatellite named Ho‘oponopono, or “to 
make right” in the Hawaiian language. While the RADCAL and Ho‘oponopono satellites share several common 
design features, the most apparent difference is Ho‘oponopono’s 3U CubeSat form factor, which is a fraction of the 
size of RADCAL. A more remarkable difference is the fact that Ho‘oponopono is a student-built nanosatellite, fab-
ricated within a modest $110K budget and two-year schedule. Ho‘oponopono was selected by NASA to be a par-
ticipant in its CubeSat Launch Initiative and is manifested for a 2013 launch.  

KEYWORDS:   CubeSat, radar calibration 

INTRODUCTION 

Today’s radar calibration satellites serve a large number 
of beneficiaries including NASA, 13 tri-service agen-
cies, over 80 user programs, and over 100 radar stations 
distributed over 23 geographic locations1. Access to this 
critically important calibration capability will soon 
come to end, however. The Radar Calibration (RAD-
CAL) and DMSP F-15 satellites are the only two radar 
performance monitoring satellites still in orbit of the 
five that have launched since 1969, and both are operat-
ing over 18 and 8 years past their operational lifetimes, 
respectively. 
 
This paper presents the first CubeSat solution designed 
and developed to address the imminent, operational 
need to supplement the RADCAL satellite. Designed 
and built by a team of undergraduate and graduate stu-
dents at the University of Hawaii (UH), this CubeSat is 
named Ho‘oponopono (“to make right” in the Hawaiian 
language), an appropriate name for a calibration mis-
sion.  
 
The project is funded and administered by the AFRL/ 
AFOSR/AIAA University Nanosatellite Program 
(UNP)2, and is in its final phase of development in 
preparation for a 2013 NASA launch. 

                                                           

Copyright © 2012 by AIAA Reinventing Space Conference 
2012. All rights reserved.  

RADCAL SATELLITE 

RADCAL (Figure 1) was designed with the primary 
mission of supporting the calibration of C-band radar 
stations operated by the US Space Launch Range. It 
was developed and delivered within an aggressive one-
year schedule through a $10 million contract (including 
launch) administered by the US Air Force Space Test 
Program3. RADCAL was launched from a Scout rocket 
on June 25, 1993 into a near-circular orbit at an altitude 
of 815 km x 765 km and 89.5° inclination, with a mis-
sion life designed for minimum and nominal durations 
of 1 and 3-5 years, respectively4. 
 
RADCAL carried three experimental payloads: (1) a 
communications system that exhibited store-and-
forward and bent-pipe features, (2) a peak power track-
er to control the charging process of one of its on-board 
batteries, and (3) a pair of GPS receivers to help vali-
date the feasibility of GPS as an accurate and reliable 
means of orbit determination5-6. 
 
RADCAL consequently became the first satellite to 
successfully show that GPS could be used as a reliable 
means for attitude determination7. Power consumption 
issues, however, limited the amount of time that the 
GPS hardware could operate before the satellite experi-
enced overloading issues and reboots. 
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Figure 1. RADCAL satellite
5
. 

 
All orbit determination for satellites in the years preced-
ing RADCAL was carried out using Doppler beacon-
ing. In fact, since RADCAL’s GPS payload was purely 
experimental, Doppler beaconing is still its primary 
source for orbital determination, requiring a network of 
tracking stations to monitor the satellite. All tracking 
information is then sent to one or more processing sites 
where the orbits are determined. In RADCAL’s case, 
the GPS Division of the National Geospatial-
Intelligence Agency (NGA) uses 21 Doppler tracking 
stations to produce daily ephemerides of RADCAL8. It 
is also through Doppler beaconing that RADCAL is 
able to meet its stringent 5-m accuracy of orbit deter-
mination. 
 
Now over 18 years past its operational lifetime, RAD-
CAL has repeatedly failed on several occasions before 
being brought back online. Permanent failure is there-
fore imminent for this well-established source of cali-
bration for radar systems around the world. 
 

HO‘OPONOPONO CUBESAT 

The most attractive feature of UH’s Ho‘oponopono 
CubeSat (Figure 2) is that it was designed to carry out 
the same basic function as its RADCAL counterpart, 
but at a fraction in size and cost. 
 
As participants of the sixth iteration of the UNP, our 
team of undergraduate and graduate students worked 
under a $110K budget and two-year timeline to develop 
Ho‘oponopono. As with any CubeSat design, one of the 
largest obstacles was fitting the various hardware com-
ponents into a form factor that is about the size of a loaf 
of bread. 
 

 

Figure 2. Ho‘oponopono CubeSat. 

 
Typical of most satellites, Ho‘oponopono’s functional-
ity is modularized into power, communications, com-
mand and data handling, payload, structural, and atti-
tude and control subsystems. At the heart of each active 
subsystem is a Microchip dsPIC33F microcontroller. 
More extensive design details can be found elsewhere9, 
but here we summarize the main points as well as pro-
vide updated information. 
 
Power is generated through the use of 22 Spectrolab 
Ultra Triple Junction solar cells with 28.3% efficiency. 
Power is regulated and distributed using various Maxim 
and Texas Instrument (TI) components such as DC/DC 
converters, variable resistors, and linear battery charg-
ers. A Tenergy battery pack is used for power storage 
capabilities, and inhibit schemes are incorporated to 
prevent any prelaunch electrical activity. 
 
To uplink and downlink mission-critical GPS data, 
along with various state-of-health data, Ho‘oponopono 
makes use of the Microhard MHX-2420 and AstroDev 
Lithium-1 radios. Microstrip patch and dipole antennas 
are used and designed to operate in the S and UHF 
bands for these two radios, respectively. 
 
Ho‘oponopono hosts several payload instruments to 
carry out its mission. On its nadir-facing side is an An-
tenna Development Corporation quadrifilar helix an-
tenna used for receiving and transmitting RF pulse sig-
nals to and from various radar ground stations. After 
receiving an interrogation signal from one of these ra-
dar stations, the Herley MD2000-C1 transponder unit 
acts as a microwave repeater to regenerate an amplified 
version of the received signal and retransmits directly 
back with a shift in frequency. The zenith face features 
an Antcom 1.9G1215A-XSO-2 Active L1/L2 antenna 
to collect GPS data using a NovAtel OEMV-1DF-L1L2 
GPS unit. 
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As a consequence of the pointing requirements for the 
payload instrument antennas, a relatively stable orienta-
tion is needed for successful mission operations. To 
accomplish this, a 5-m gravity gradient (GG) boom is 
designed to extend from the zenith side of Ho‘opono-
pono (Figure 3). At the end of the boom is an 80-g alu-
minum end mass. 
 
The GG boom is designed to deploy after Ho‘opono-
pono’s three hysteresis rods dampen the satellite’s os-
cillation while detumbling. These rods are developed by 
the Magnetic Shield Corporation and each placed along 
the x, y, and z axes. If the GG boom deploys in the 
wrong conditions and stabilization is oriented in reverse 
polarization, an on-board reaction wheel will actively 
turn the satellite about its axes to achieve the correct 
orientation. 
 
To determine its attitude, Ho‘oponopono implements a 
three-axis gyro, a magnetometer, and six carefully 
placed photodiodes manufactured by Invensense, Hon-
eywell, and OSI Optoelectronics, respectively. 
 
For command and data handling (CDH), Ho‘opono-
pono incorporates UH’s CubeSat Stackable Interface 
(CSI) architecture10-11. This design, which uses the PCI-
104 standard and fits within a 1000 cm3 volume, dis-
tributes standard voltages across a common bus to the 
stack of printed circuit boards (PCBs) for each subsys-
tem, and also allows for placement of addressable I/O 
expanders on each PCB that can be accessed by an I2C 
bus, permitting remote access to various I/O through 
the system. 
 
Aside from the Microchip dsPIC33F microcontroller, 
which is common among all active subsystems, CDH’s 
integrated circuitry includes the TI TCA9539 I/O ex-
pander and TI SN65HVD233 CAN driver. The Micro-
chip SST25VF032B flash memory is also used for data 
storage. 
 

 

Figure 3. Gravity Gradient Boom 

(not fully extended). 

The software for Ho‘oponopono is divided into four 
levels of programming: 1) core features, 2) protocols, 3) 
drivers, and 4) applications. 
 
All internal hardware is enclosed in an aluminum struc-
ture designed to provide strength and support while 
limiting the overall mass and balance of the spacecraft. 
 
One of UH’s previous CubeSats, “Ho‘okele”12, was 
used as the basis for designing Ho‘oponopono’s struc-
ture, however several modifications were necessary to 
accommodate the placement and sizing of the hardware. 
For example, mounting locations were customized, 
along with ensuring adequate room for a battery box 
that had a sufficient number of venting holes, per UNP 
requirements. 
 
All structural design and FEA analyses were performed 
in SolidWorks. The majority of structural components 
were milled out of 6061-T6 aluminum using a CNC 
machine. The cradle hinge for the patch antenna, how-
ever, was machined out of brass due to its solderability. 
 

RADAR CALIBRATION SEQUENCE 

Ho‘oponopono’s radar calibration sequence begins with 
a radar range submitting a request for calibration. After 
receiving the request, the RADCAL coordinators at 
Vandenberg Air Force Base create an interrogation 
schedule which is uplinked to Ho‘oponopono via a 
ground station. In the following pass, Ho‘oponopono’s 
nadir-facing transponder unit is interrogated by the ra-
dar range with a two-pulse RF signal. The trans-
ponder’s interrogation response is immediately sent 
back, and an estimate can then be made as to where 
Ho‘oponopono is in orbit. GPS data is simultaneously 
collected from Ho‘oponopono’s GPS antenna and soon 
thereafter downlinked and forwarded to the NGA for 
processing. An orbital model is made from processing 
this GPS data, which is then made available to all 
RADCAL users, including the original range requesting 
calibration. By comparing their own estimates to those 
of the more accurate GPS data, the range can then de-
termine how close their radar system is at pinpointing 
Ho‘oponopono’s orbital location and make adjustments 
as needed. 
 

RADCAL – HO‘OPONOPONO COMPARISON 

While the RADCAL and Ho‘oponopono satellites share 
several design features such as C-band transponders for 
the radar interrogations and GG booms for nadir- and 
zenith-facing transponder and GPS antennas, respec-
tively, advances in technology since the time of RAD-
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CAL’s development in the early 1990s have allowed for 
other features to mature. 
 
RADCAL’s two redundant Trimble TANS Quadrex 
GPS receivers, for example, which were added purely 
for experimental purposes, helped RADCAL become 
the first satellite to successfully demonstrate that low-
cost GPS receivers could be used to generate highly 
precise orbital data. Today, companies such as 
NovAtel, Inc., have specialized in developing a com-
plete product line of GPS receivers that meet a wide 
range of accuracies13. The higher performance of these 
newer GPS receivers also allows for processing data 
from a larger amount of GPS satellites at a given time 
(the maximum of 6 GPS satellites that RADCAL’s 
Trimble GPS receivers were capable of simultaneously 
processing data from is tripled to 18 with the NovAtel 
OEMV-1DF-L1L2 unit that Ho‘oponopono employs)14-

15. The same holds true for the GPS antenna industry, as 
a number of specially designed antennas are now avail-
able that feature 3-dB beamwidths over 100 degrees to 
collect GPS data from large amounts of GPS satellites 
at a given time16. This eliminates the need to manually 
switch between several patch antennas as the attitude of 
the satellite varies, as RADCAL was designed to do, 
thus reducing the amount of on-board antennas. 
 
The fact that Ho‘oponopono plans to utilize its on-
board GPS receiver for self-orbit determination also 
eliminates the logistical and manpower requirements 
that RADCAL uses for its Doppler beacon tracking. 
  
On a much broader level, Ho‘oponopono implements a 
wide array of commercial off-the-shelf microelectronics 
and integrated circuitry that exhibit higher performance 
ratings, lower costs, and smaller form factors than 
what’s featured on RADCAL’s nearly 20-year-old bus. 
Consider as an example Ho‘oponopono’s 8-MB flash 
memory IC which doubles the 4 MB available on 
RADCAL. It was by implementing these newer, small-
er (and oftentimes better-performing) technologies that 
our team was able to contrive a novel RADCAL satel-
lite that fits within a 3U CubeSat structure. 
 

By downscaling the RADCAL satellite to a 3U Cube-
Sat, a significant reduction in cost is realized by com-
paring the $10M allocated for RADCAL’s development 
and launch to Ho‘oponopono’s $110K budget from the 
UNP – a nearly hundredfold reduction in cost! 
 
The next benefit realized through switching to a 3U 
CubeSat is a more streamlined fabrication process. Al-
though Ho‘oponopono was designed and built over the 
course of a two-year period through our participation in 
the UNP, duplicating a future version, even with slight 
revisions, could be done very quickly. This works in 

favor for our team as our 2013 launch is meant to serve 
as a “lessons learned” opportunity to prove the func-
tionality of our satellite. Moreover, it presents the op-
portunity for rapid-response deployments in the event 
of on-orbit failures.  
 

The most obvious benefit in switching to the CubeSat 
form factor is a drastic reduction in size. A side-by-side 
comparison shows that the 89-kg RADCAL, with a 
diameter of ~76 cm and a height of ~43 cm, is over 65 
times larger in size and 25 times larger in mass than 
Ho‘oponopono! 
 
Though switching to a CubeSat structure was highly 
advantageous in our case, we were also faced with a 
few drawbacks, one of which was a lack of redundancy 
in our system due to the limited real estate within our 
structure (RADCAL features duplicate GPS receivers, 
Doppler transmitters, and C-band transponders while 
Ho‘oponopono is a single-string system). 
 
It is worth mentioning that, despite their superficial 
differences, Ho‘oponopono was designed to meet many 
of the core mission objectives of RADCAL, such as the 
requirement for RADCAL to complete a full radar cali-
bration sequence in five days (which includes all as-
pects of the radar interrogation and ephemeris data col-
lection and data processing turnaround from the NGA). 
 
Table 1 summarizes additional RADCAL vs. Ho‘opo-
nopono features. 

Table 1. RADCAL vs. Ho‘oponopono Comparison 

Parameter RADCAL Ho‘oponopono 

Mass (kg) ~89 ~3.5 

Volume (m3) 0.197 0.003 

Cost $10M $110K 

On-board memory (MB) 4 8 

GG boom length (m) 6.096 5 

Number of antennas 10 4 

Primary orbit determination 
mechanism 

Doppler 
beaconing 

GPS data 

Total duration for C-band radar 
calibration, spanning from 
interrogation to receiving proc-
essed GPS data 

5 days 5 days 

Single string? No Yes 

 

UNP PARTICIPATION, UPCOMING LAUNCH 

As participants in the sixth iteration of the UNP compe-
tition, our team competed against ten other universities 
from across the nation through a number of reviews that 
spanned from the conceptual stages of identifying mis-
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sion objectives to presenting a flight-ready satellite. At 
the conclusion of UNP-6, our team was awarded with 
the Third Place and Most Improved Awards for produc-
ing an engineering model of the Ho‘oponopono Cube-
Sat. 
 
The Ho‘oponopono CubeSat was also consequently 
selected by NASA to be a participant of its CubeSat 
Launch Initiative in February 2011 and is tentatively 
manifested for a 2013 launch on-board a SpaceX Fal-
con 9 rocket as a part of the Commercial Resupply Ser-
vices 3 payload. The tentative orbital parameters in-
clude a 325-km, elliptical orbit with a 51° ± 2° inclina-
tion17. 
 

PRACTICAL EXPERIENCE 

Our team has worked under the auspices of various 
organizations, but most directly with the UNP, In-
Dyne/WROCI, and the Northrop Grumman Corpora-
tion, gaining practical leadership and engineering skills 
along the way.  
 
By participating on a project of this caliber, our stu-
dents are exposed to real engineering design criteria 
with real mission requirements, which allow us to de-
velop the practical and hands-on skills that matter most 
in today’s workforce. 
 

CONCLUSIONS 

This paper presented an experimental 3U CubeSat de-
signed to supplement the failing RADCAL satellite. 
The background and high-level comparison of their 
design features were discussed. Our team of under-
graduate and graduate students has gained a great deal 
of practical engineering experience throughout the du-
ration of this project, and will move one step closer to 
providing the government with a fully-functional radar 
calibration CubeSat following our NASA-sponsored 
2013 launch. 
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